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Abstract 

In the design of pressure relief systems for vessels containing liquid, the phase of the flow 
through the vent line is very important. Mounting the line on the top of the vessel does not 
necessarily guarantee all vapor flow. One must calculate whether vapor bubbles formed in the 
liquid will disengage before they reach the vent entrance. 

Disengagement can be predicted via an axial void fraction profile that is calculated based 
upon volumetric gas production. It is assumed that the liquid phase is continuous and that 
pseudo-steady state is reached. The disengagement model is based on a constant energy 
generation per unit mass of liquid. For non-foaming systems, one of two drift-flux correlations 
can be chosen on the basis of viscosity. The churn-turbulent drift-flux correlation is for 
low-viscosity systems, and the DIERS’ viscous-bubbly drift-flux correlation is for high-viscosity 
system [l, 21. This model reduces to a single ordinary differential equation (ode). Analytic 
integration results for this model are possible for constant cross-sectional area vessels (e.g., 
vertical cylinder) and non-unity distribution parameters Co [3-51. 

If this calculation shows the bubbles do not disengage, either a partial differential equation 
model must be solved or the coupling equation must be used. The coupling equation uses the 
maximum void fraction (calculated from the ode) and ties together the vessel and vent models. 

The ode solutions relate the local and average void fractions to the dimensionless superficial 
vapor velocity. For the churn-turbulent drift-flux correlation, explicit relationships are present- 
ed for the first time. They validate the earlier approximation of Fauske et al. [6] (see also Ref. 
[3]). For the DIERS’ viscous-bubbly drift-flux correlation, implicit relationships are presented 
for the first time in the open literature. The earlier approximation of Fauske et al. [6] (see also 
Ref. [7]) fit the data, but is different than these integration results. Further work is in progress to 
refit the data [S] and to clarify the best model to use. 

For non-constant cross-sectional area vessels (e.g., horizontal cylinders and spheres), the 
analytic integration is difficult, but numeric results have been presented [3,7]. The details of the 
numeric integration are presented and discussed here. As the cross-sectional area converges 
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(toward the top of the vessel), the vapor concentration (i.e., the void fraction) and velocity 
increase. The maximum local void fraction occurs at the top of the vessel. Numerical difficulties 
are encountered as a result of the cross-sectional area going to zero at the bottom and top of the 
vessel. The pseudo-steady-state model imposes void fractions of minimum and maximum at 
these extremes (i.e., 0 and l/Co). 

Keywords: Two-phase flow; Venting; Disengagement; Void fraction; DIERS; Drift-flux cor- 
relations; Churn-turbulent; DIERS’ viscous bubbly 

1. Introduction 

The phase of the vent flow is important for emergency relief system design. If 
bubbles form and the vessel contents swell to the top, two-phase vent flow will occur. 
The sonic velocity for two-phase flow is a function of void fraction and is typically 
more than an order of magnitude lower than either liquid or vapor flow. Thus, a larger 
vent is required. Therefore, predicting the void fraction of the two-phase flow and the 
point of onset and of disengagement (i.e., cessation of two-phase flow) is crucial for 
proper pressure relief device design. 

Drift-flux correlations are correlations from experimental data of two-phase flow in 
pipes which relate the relative speed of the vapor to the void fraction of the mixture. 
These drift-flux correlations are used to describe the movement occurring in the 
vessel. Earlier work indicated that for non-foaming systems one of two drift-flux 
correlations can be chosen on the basis of viscosity Cl]. They are the churn turbulent 
and a modified bubbly (i.e., DIERS viscous-bubbly [S]). The churn-turbulent drift- 
flux correlation is recommended for low-viscosity systems (p < 100 cP) and the DI- 
ERS viscous-bubbly drift-flux correlation for high-viscosity systems [ 11. The liquid 
phase is assumed to be continuous. Liquid entrainment (two-phase flow with the gas 
phase continuous) is not considered (for information on liquid entrainment, see Refs. 
c9, 101). 

This paper details the assumptions and simplifications to derive and solve the 
ordinary differential equation describing disengagement. The work presented in this 
paper is independent of drift-flux correlation chosen. It is also relevant when two- 
phase flow does occur. In that case, either the resulting partial differential equations 
must be solved or the coupling equation can be used to tie together a pseudo-steady- 
state vessel model with the vent line model. The coupling equation uses a maximum 
void fraction value calculated from the disengagement model discussed below (see Ref. 
[9] for a further discussion of this topic). For more background information see Refs. 
IX, 2361. 

2. Discussion 

Five key model elements are reviewed, including the pseudo-steady-state assump- 
tion and the use of drift-flux correlations to predict disengagement. Next, the analyti- 
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Fig. 1. Differential slice for combined vapor material balance or energy balance. 

cal integration results for the local void fraction (a or amax at the top of the vessel) and 
average void fraction (i) in constant cross-sectional area vessels (e.g., vertical cylin- 
ders) are presented. These results are compared with the DIERS approximation. 
Following this, the extension to non-constant cross-sectional area vessels via numeric 
integration is described. 

2.1. Disengagement model reviewed 

The model is derived for a differential slice as shown in Fig. 1. There are five key 
elements to this model. The first four are foundational assumptions. The fifth is the 
boundary conditions. These elements are as follows: 

1. vapor generation (e.g., energy input) is proportional to the liquid mass; 
2. a distribution parameter can be used to adjust the drift-flux correlation (origin- 

ally the distribution parameter was used to account for radial gradients in small 
diameter pipes); 

3. pseudo-steady-state conditions occur (i.e., large volumetric vapor production 
makes a small difference in the liquid volume and thus the liquid velocity ~0); 

4. an appropriate drift-flux correlation describes the system behavior; 
5. the boundary conditions are such that both the local and average void fractions 

approach zero at the bottom of the vessel. 
The implications of and associated equations for each of the four assumptions are 

discussed below, as are the average void fraction definition and boundary conditions. 

2.1.1. Vapor generation 
Vapor generation (e.g., by energy input) is assumed to be proportional to liquid 

mass. That is, for a differential slice of thickness AZ, the following expressions arise: 

Mass of liquid: Liquid = pfAAz(l - a), (1) 

Energy input: Energyinput = qprAAz(l - 4, (2) 
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Mass of vapor: Wvapor = $,AAz(l - a), 

Volume of vapor: Qvapor = f%Az(l - a). 
A Pg 

(3) 

(4) 

Note that the area A can be a function of height z. 

2.1.2. Distribution parameter 
Zuber and Findley [ 1 l] introduced a distribution parameter to account for radial 

gradients without integrating radially. It was defined as the ratio of the average of the 
product of flux times void fraction to the product of average of flux and of void 
fraction (i.e., Co = (orj)/(cc)( j)). According to Wallis [12] , Co.. . usually lies between 
1.0 and 1.5 with a most probable value of about 1.2”. As discussed by Zuber and 
Findley [ll], a distribution parameter of 1.5 indicates a very large radial gradient. 

However, large diameter vessels are common in the chemical process industry. 
Therefore, a very small radial gradient is expected. DIERS [2] recommends values of 
1.5 for the churn-turbulent case and 1.2 for the DIERS’ viscous-bubbly case. Since this 
value is much larger than would be expected in a process vessel, Fisher [ 131 suggests 
that the churn-turbulent distribution parameter value is high and may be viewed as 
a fitting parameter. The most appropriate DIERS’ viscous-bubbly distribution par- 
ameter is currently under discussion. Sheppard [14] suggests 1.5 may be better, but 
a more definitive recommendation should be available in late 1995 [8]. 

2.1.3. Pseudo-steady-state conditions 
Vapor bubbles are expected to form in the bulk, and to rise up, moving faster than 

the liquid, swelling the vessel contents. Assuming pseudo-steady state, the interface is 
below the vent, the bubbles will break though the interface, and all vapor venting will 
occur. The interface will slowly fall, as material leaves the system. Since a large 
increase in vapor volume makes only a small decrease in the liquid volume, the liquid 
velocity is small, and can be assumed to be zero (i.e., j, M 0). 

For the differential slice shown in Fig. 1, the definition for drift flux is 

j,, = (1 - Cocr)j, - Coajf (5) 

The equation simplifies for a distribution parameter Co of unity. 
Using the pseudo-steady-state assumption (i.e., jr = 0) the general drift-flux equa- 

tion becomes 

Using the other assumptions, for the differential slice, the material balance becomes 
a differential vapor balance, or, equivalently, an energy balance as follows: 

Vapor 
+ 

Vapor Vapor 
+ 

rate of Vapor 
in Generation = out Accumulation (7) 
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Aj,l, + ;;AAz(l -a) = Aj&+Az + 0, 
g 

Ajglz + AZ - hgh 

AZ 
=!$A(1 -a), 

g 

$(j,A) = !$A(1 - CX). 
g 

(9) 

(10) 

This expression models the disengagement process; the model is simplified below by 
the introduction of definitions and completed by including a drift-flux correlation. 

The dimensionless superficial vapor velocity $ is by definition the ratio of superfi- 
cial vapor velocity jgm to bubble rise velocity U,. The superficial vapor velocity is the 
volume of gas produced in the vessel divided by the cross-sectional area of the vessel. 
The bubble rise velocity is the velocity at which a single bubble rises in an infinite 
medium of the liquid; it is used in the drift-flux correlation. To simplify the equation, 
this definition of $ [6] or the modified dimensionless superficial vapor velocity E can 
be used. These velocities are defined as follows: 

(11) 

This first definition [6] is based on the volumetric flow of gas coming off the top of 
an open, constant cross-sectional area vessel. For a non-constant cross-sectional area 
vessel, the meaning of the dimensionless superficial vapor velocity + is not clear. It can 
be viewed as an equivalent dimensionless superficial vapor velocity for a vertical 
cylinder. Or, as discussed in Part II [16], the velocity can be calculated based on an 
average cross-sectional area. Details on the modified dimensionless superficial vapor 
velocity are given in Ref. [ 151. 

In the derivation below, both dimensionless superficial vapor velocity definitions 
are used, the first since it is the more widely used and the second because the results 
are simpler. Using these definitions, the vapor generation rate becomes 

Substituting this result into Eq. (12), gives 

Defining a dimensionless height (i.e., z* = z/H) gives 

* -A(1 -a). 
(1 -L?) 

(13) 

(14) 

(15) 
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Note that some researchers define dimensionless height in terms of initial liquid height 
H,,, e.g., Ref. [S]; this definition is not used here. 

For constant cross-sectional area vessels this reduces to 

8(1 - c() = &(l -a). 

Differentiating with respect to CI, gives 

d j, da 
doe u, dz*- H 

- 8(1 - a) = &(l - c+ (17) 

2.1.4. Drift-jlux correlation 
The drift flux is the relative flux or speed of the light phase to the heavy phase (e.g., 

the vapor flux minus the liquid flux). Experimental data on two-phase flow in small 
diameter pipes have been measured and exhibit distinct flow regimes. This flux data 
have been successfully correlated with void fraction for the observed flow regimes. 
Thus, these correlations are useful for predicting the flow when the expected flow 
regime has been identified. They are used in Eq. (6) and are differentiated with respect 
to z for use in Eq. (15) or (17). The results for the two drift-flux correlations of interest 
follow. 

The churn-turbulent drift-flux correlation has the form 

jgf = Urna, (18) 
and, using Eq. (6), the relationship between drift flux and vapor volumetric flux, gives 

Differentiating gives 

d j, 
da u, (-)=(l-corr)” 

(19) 

(20) 

as is needed for Eq. (15) or (17). 
Similarly, the DIERS’ viscous-bubbly drift-flux correlation is a modification of the 

bubbly drift-flux correlation of Wallis [12]. According to Grolmes and Fisher [S], the 
term in the denominator was added to ‘correlate the departure of viscous material 
hold-up data from both simple bubble and churn-turbulent relations’. The drift-flux 
correlation and vapor volumetric flux equations have the following forms for viscous- 
bubbly flow: 

(21) 

(22) 
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Differeintiating gives 

d j, _ C-J - (Coa4 - 2cofx3 - 2(Co - l)c? + 2a - 1) 
da u, [(c? + c1 + l)(l - Coa)]2 (23) 

as is needed for Eq. (15) or (17). 

2.1.5. Boundary conditions 
There are two boundary conditions for the pseudo-steady-state model. At the 

bottom of the vessel, the local and average void fractions are assumed to approach 
zero (i.e., c1 = 0 at z = 0). To avoid numeric problems, very small void fraction values 
are used at the bottom of the vessel for the numeric integration (e.g., 10d4). At the top 
of the vessel, the void fraction reaches its maximum value. Thus, NIP,_ = LX,,,,, or 
c(=cI max at z = H or z* = 1. 

For horizontal cylinders, and spheres, the cross-sectional area approaches zero at 
the top and bottom of the vessel so that the numeric integration fails at these 
locations. Again we need only start the integration at a very small height (e.g., 
z = 10P6) and end the integration very close to the total height (e.g., z = 0.9998). The 
maximum void fraction occurs at the top of the vessel and will approach the 
asymptote of l/Co [9]. 

2.2. Analytic results for constant cross-sectional area vessels 

Finally, one can combine the appropriate differentiated drift-flux relationship 
above with Eq. (17). This single differential equation is integrated to find a relationship 
between the local void fraction and the dimensionless superficial vapor velocity. Then 
using the definition of the average void fraction one integrates again to find a relation- 
ship between the average void fraction and the dimensionless superficial vapor 
velocity. This integration process is illustrated below for constant cross-sectional area 
vessels for the churn-turbulent and DIERS’ viscous-bubbly drift-flux correlation. 
Closed-form solutions are found for both cases. 

2.2.1. Churn-turbulent drzj&@x correlation 
An implicit relationship between dimensionless superficial vapor velocity, average 

and local void fraction has been presented before [15, 171. An explicit relationship 
between average and local void fraction and the dimensionless superficial vapor 
velocity is presented here. 

Substituting Eq. (20) into Eq. (17) gives 

(1 - a)-‘(1 - Coa)-$ = A- = s:“. 
(1 -cc) 

This is integrated using partial fractions as illustrated below: 

& = * 
(1-= 0 s ‘(1 - a)-‘(1 - Cool)-‘dcc 
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s a A B c 
= 

- - 
0 (1 - Lx) + 1 - Coa + (1 - co@ 

dcc 

=(l -Co)-’ 
s 

,“&+&+~lo(C&--:Z)dz 

=(~-CO)-~ -ln(l-r)+ln(l-Cocr)+E O1 1 0 
(25) 

so 

+ -z*=~z*=(Co-l)-‘[ln{~~+Co(co-1)+(1~co~)].(26) 
(1 -LY) 

This is an implicit relationship between local void fraction and dimensionless superfi- 
cial vapor velocity (it is explicit in z, but we desire it to be explicit in a). 

The definition of the average void fraction is as follows: 

s z*,oL 

Aa dz* 
cr= z*=o,a=o 

s 

Z* 
A dz* 

z* = 0 

For the constant cross-sectional area case this can be simplified to 

z*,d( 

iI*= 
1 

cOnStan, = - 
Z* s 

adz*. 

z* = 0,a = 0 

From the differential material balance, Eq. (24), one obtains 

(27) 

(28) 

dz* = K’(1 - a)-‘(1 - Coa)-2da, (29) 

and substituting this into Eq. (28), the following integration can be performed: 

1 

s 

z* 
cLI*= cOnStan, = - 

Z* 
&-‘(1 - a)-‘(1 - Coa)-2da 

z* = o,d( = 0 

1 = =- 
Z*E s o ~(1 - a)-‘(1 - Coa)-2da 

1 

s 

= A’ B’ C’ =- 
Z*.3 

-++ 
0 (1 - CI) 1 - cocr + (1 - Coa)2 da 

= --&l - CO)-~ I$--+ + -co + (” - ‘) da 
s 1 - cocr (1 - co@ 

=--&(~-CO))~ 
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So this second integration leads to the average void fraction relationship: 

119 

ti a-z* = iEz* = (Co - 1)-2 ln 
(1 -i) [ {+$l+(Co- l)(l :&)I. (31) 

This is an implicit relationship between average void fraction and dimensionless 
superficial vapor velocity. 

One can subtract Eq. (31) from (26) to obtain the following: 

or 

* 
(1 -a) z*(l - @) = (1 _NC0,) 

1 
*z* = (1 _“Coco = ; - co 

[ I 
-1 

. (33) 

(34) 

At the top of the vessel the void fraction is defined as tl,,, (i.e., c1 = amax at z* = 1) 

1 -1 
ICI 

c? max = - 
[ 1 * 

+ co 
=1+col/L 

Each urnax term in Eq. (26) can be formulated in terms of II/ as follows: 

1 - COClmax l/%nax - co 1/* + co - co 
1 - c&,x = l/c&, - 1 = l/Jl + co - 1 

(35) 

= [l f (Co - l)$]_‘, 

&lax 1 
1 - Coamax = l/amax - co = $. 

Using these results in Eq. (26), one obtains 

$ - = E = (Co - 1))‘[- ln[l + (Co - l)$] + Co(C0 - l)$], 
(1 -i) 

or 

(36) 

(37) 

(38) 

& = 1 + +(l - Co)Z{ln[l + (Co - l)$] - Co(C0 - 1)+)-l. (39) 

So exnlicit analytic equations for the local and average void fractions, as a function 
of +, have been derived (i.e., Eqs. (37) and (39)). 
agreement between the analytical k results and 
DIERS [6] which follows (see Fig. 2): 

Sheppard [ 151 found reasonable 
the approximation suggested by 

(40) 
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Fig. 2. Vertical cylinders local and average void fraction analytic integration results and DIERS approxi- 
mations compared for the churn-turbulent drift-flux correlation. 

Fig. 2 also shows a comparison between the analytical CI,,, results and the approxima- 
tion suggested by DIERS [6], or 

2or 
ci max =m. (41) 

As Fig. 2 shows the approximations are reasonable. The maximum void fraction is 
underpredicted by, at most, 3.1% (with this maximum deviation occurring around 
a $ value of 2). The average void fraction is overpredicted by, at most, 5.5% (with this 
maximum deviation occurring at a ij value between 3 and 4). But since exact explicit 
equations are now known, there is a little reason to use the approximations. 

2.2.2. DIERS’ viscous-bubbly drift-jlux correlation 
For the DIERS’ viscous-bubbly case, an analytic expression for the vertical cylinder 

case is included. This expression was reported by Morris 143 and confirmed by 
Grolmes [S]. 

For the constant cross-sectional area case (e.g., a vertical cylinder) the derivative of 
the cross-sectional area with respect to height is zero, which simplifies the vapor 
material balance (Eq. (19)). Then, the DIERS’ viscous-bubbly drift-flux correlation 
and its derivative can be used along with the average void fraction definition. After 
some algebra and two integrations, the following expressions are obtained [4]: 

(42) 
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- - - analytic local void CrDction and DIEM 

approximation for the averogc void fraction 

. numeric nverage void lracrion U 

Fig. 3. Analytic local and average void fraction integration results and DIERS approximations compared 
for the DIERS’ viscous-bubbly drift-flux correlation. 

c( 
&.= 

maxx + Y %nax + YIX 

x+Y = 1 + y/x ’ (43) 

where 

%nax %ld - %ax) 
x=(l+ %I,, + a&,)(1 - Co%l,,) = (1 - &&Al - CWn,X)’ (44) 

’ = [ 

co - 1 
6(Co2 + Co + 1) I[ In 1 + 4nax + dx3x 

(1 - a,,,)2 ] - [&]ln[ lz2L,] 

co + l 
&co2 + co + 1) 

]t-‘[&]. (45) 

This is an implicit relationship between the maximum void fraction, average void 
fraction, and the dimensionless superficial vapor velocity. It is readily evaluated for 
a given value of cl_ giving the corresponding values of $ and Cc. Morris [4] also 
provides a correlation between the local and average void fraction at the top of the 
vessel (i.e., LX,,, and c?). 

Morris [4] and Sheppard [7] also found poor agreement (see Fig. 3) between the 
numeric Cc results to the approximation suggested by DIERS [6], which follows 

a(1 - a)2 
ik = (1 - 2)(1 - COG?). 

In light of the above analytic integration results, this result is not surprising. The 
approximation suggested for the average void fraction is the exact relationship for the 
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The definitions of the average void fraction and its relationship, in terms of the 
integration variables, are as follows: 

So this model is represented by three explicit first-order differential equations. They 
are vapor balance, and the bubble and enclosed volume equations (i.e., Eqs. (51), (55) 
and (56)). 

For non-constant cross-sectional area vessels, the cross-sectional area approaches 
zero at the top and bottom of the vessel. The numeric integration fails at these 
locations. This failure is not a problem for the calculation of the average void fraction. 
One can start the integration at a very small height (e.g., z = 10W6) and end the 
integration very close to the total height (e.g., z = 0.9998). The bubbles not included 
in the first 0.0001% and last 0.1% will not affect the average void fraction. 

3. Conclusions 

Analytic results are given for constant cross-sectional area vessels (e.g., vertical 
cylinders) and the two drift-flux correlations. These results relate the dimensionless 
superficial vapor velocity (II/ or X), average void fraction (G), and local void fraction at 
the top of the vessel (tl,,,). For the churn-turbulent drift-flux correlation, a closed- 
form explicit solution is presented. For the DIERS’ viscous-bubbly drift-flux correla- 
tion, an implicit solution is given. Thus, the relationships needed for the coupling 
equation are available. 

For horizontal cylinders and spheres, numeric integration is required. The equa- 
tions are manipulated to obtain three first-order ordinary differential equations. The 
local void fraction at the top of the vessel c1,,, is shown both by reasoning about the 
model and numeric results to go to the asymptote value of l/Co for all dimensionless 
superficial vapor velocity + values. If correct, this would bring into question the 
assumption of a continuous liquid phase with a void fraction of less than 40%. 
However, this asymptote value wrongly implies only vapor will come out of the vessel 
when Co equals one (again these drift-flux models do not consider a gas-continuous 
regime). This problem may be due to the drift-flux relationship assuming momentum 
effects are negligible with respect to buoyancy effects. This will not be the case for the 
converging cross-sectional area. Therefore, this amax result should not be used in the 
coupling equation. Further experimental work in this area is warranted. 

In summary, the theoretical basis of the DIERS’ disengagement model has been 
discussed along with the deviation of the resulting equations. By understanding the 
model better the engineer will have a greater appreciation of the applicability of these 
models to their pressure relief system design. These models are among the best 
available and are conservative. Further experimental and modeling for non-constant 
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cross-sectional area systems (and high-viscosity systems) are under consideration in 
order to improve our understanding. 

Nomenclature 

A 
co 
Energyinput 

ff 
Hliq 
j 
Je 
JW 

j,f 

L 
Liquid 
4 
Q vapor 
R 

urn 

V vessel 
V bubbles 

W vapor 
x 

Y 

Z 

Z* 

Greek letters 

U 

E 

Umx 

A 

void fraction (percentage vapor) 
average void fraction 
maximum void fraction which occurs at the top of the vessel 
latent heat of vaporization, Btu/lb or J/kg 

cross-sectional area of the vessel, ft’ or m2 
distribution parameter 
energy input to the differential slice, Btu/s or J/s 
gravitational constant, ft/s2 or m/s’ 
height of tank, ft or m 
liquid level in tank, ft or m 
volumetric flux, ft/s or m/s 
vapor volumetric flux, ft/s or m/s 
superficial vapor velocity at the top of a cross-sectional area vessel (ft/s 
or m/s) 
drift flux, ft/s or m/s 
length of the horizontal cylinder 
mass of the liquid in the differential slice, lb or kg 
heat generation rate per mass of liquid, Btu/s lb or J/s kg 
volume of vapor produced in the differential slice, ft3/s or m3/s 
radius of the horizontal cylinder and the sphere 

volume of vessel, ft3 or m3 
volume of bubbles in the vessel, ft3 or m3 
mass of vapor produced in the differential slice, lb or kg 
an intermediate term in Ref. [4] analytical integration for the DIERS’ 
viscous-bubbly case 
an intermediate term in Ref. [4] analytical integration for the DIERS’ 
viscous-bubbly case 
height from bottom of vessel, ft or m 
dimensionless vertical height based on total vessel height not liquid 
height (z/H) 
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= modified dimensionless superficial vapor velocity [ 151 

( 

Pr4H $ =----__ 
Pg A u* (1 - (9 > 

liquid density, lb/ft3 or kg/m3 
vapor density, lb/ft3 or kg/m3 
surface tension, dyn/cm or N/m 

dimensionless superficial vapor velocity Pf qHU - 4 = - - 
PgJ. urn 
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